
Date of publication August 25, 2023

Digital Object Identifier TBD

Identification of Digits Using Different
Configuration ANNs
PRATIGYA PAUDEL1, SUSHANK GHIMIRE1
1Institute of Engineering, Thapathali Campus, Bagmati 44600 Nepal (e-mail: pratigyapaudel0@gmail.com)

Corresponding author: Pratigya Paudel (e-mail: pratigyapaudel0@gmail.com).

"This work was completed as a part of a college practical for Data Mining (CT725).”

ABSTRACT Artificial Neural Networks (ANNs) have garnered significant attention due to their effec-
tiveness in various machine learning tasks, particularly image classification. ANNs are renowned for their
capability to learn complex patterns and relationships from data, and they have revolutionized the field of
computer vision. In this study, we delve into the application of ANNs to classify images from the MNIST
dataset. The MNIST dataset comprises a collection of handwritten digits, each represented as a grayscale
image. Our objective is to harness the power of ANNs to accurately classify these images into their respective
numerical classes (0 to 9). This research aims to explore the potential of ANNs in discerning intricate features
and characteristics that distinguish different digits. By utilizing layers of interconnected neurons, ANNs
can capture hierarchical features from raw pixel values. This involves learning and fine-tuning weights that
enable the network to recognize distinctive patterns in the images. The training process involves feeding the
network a large set of labeled images and iteratively adjusting the weights to minimize the classification
error. The paper also focuses on comparing the results on the models by using different weight initialization
approaches. The Kaiming and Xavier initialization approaches bring different results to the vanilla approach
of training a model. Furthermore, the fundamentals of a neural network with dropout layers are designed
from the scratch to test their performance.

INDEX TERMS Neurons, Layers, Supervised Machine Learning

I. INTRODUCTION

ANNARTIFICIAL NEURAL NETWORKS are a
class of machine learning models inspired by

the structure and functioning of the human brain’s neural
networks. Comprising interconnected nodes, or "neurons,"
arranged in layers, ANNs have the capacity to learn complex
patterns and relationships from data. They excel in tasks rang-
ing from image and speech recognition to natural language
processing. Through a process called training, ANNs adjust
their internal parameters, or weights, to minimize prediction
errors. This adaptability enables ANNs to generalize well
to new data, making them effective tools for classification,
regression, and even more advanced tasks like generative
modeling.
Artificial Neural Networks (ANNs) comprise distinct lay-
ers, each serving a unique role in the network’s learning
process. The input layer accepts raw data and passes it to
subsequent layers. Hidden layers, situated between the input
and output layers, are responsible for extracting and learning
relevant features from the input. Neurons within these layers
process information through weighted connections, applying

activation functions that introduce non-linearity to the model.
Hidden layers enable ANNs to capture intricate relationships
within data. Finally, the output layer produces the network’s
predictions or classifications. The architecture’s depth and
arrangement of layers influence the model’s complexity and
its ability to learn complex patterns. This layered structure
empowers ANNs to tackle diverse machine learning tasks,
from image recognition to language processing, by progres-
sively transforming input data into meaningful predictions or
decisions.
Forward propagation is a crucial step in training neural net-
works, where input data is passed through the network’s lay-
ers, progressively transformed by weighted connections and
activation functions to produce predictions or output values.
Backward propagation, also known as backpropagation, fol-
lows forward propagation and involves calculating gradients
of the loss function with respect to network weights. This
process enables the network to understand how each weight
contributes to the overall error, facilitating weight updates to
minimize the loss. Gradient descent, a fundamental optimiza-
tion technique, leverages these gradients to iteratively adjust

1

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

weights in the opposite direction of the gradient, gradually ap-
proaching the optimal values that minimize the loss function.
These interconnected processes play a central role in training
neural networks, enabling them to learn and improve their
predictions over successive iterations.
Activation functions are fundamental components in Artifi-
cial Neural Networks (ANNs) that introduce non-linearity to
the model, enabling it to capture complex patterns and rela-
tionships within data. These functions determine the output of
a neuron based on the weighted sum of its inputs, influencing
whether the neuron should "fire" or remain inactive. Common
activation functions include the sigmoid, hyperbolic tangent
(tanh), and rectified linear unit (ReLU), each with distinct
properties. Sigmoid and tanh functions squash values into a
specific range, while ReLU provides a simple thresholding
mechanism that accelerates training by mitigating the vanish-
ing gradient problem. The choice of activation function sig-
nificantly impacts network behavior, affecting training speed,
convergence, and overall model performance.
Kaiming and Xavier initializations are essential techniques
in training Artificial Neural Networks (ANNs) to ensure ef-
ficient and stable learning. Xavier initialization focuses on
maintaining consistent variance of activations across layers,
particularly benefiting networks with linear-like activation
functions. On the other hand, Kaiming initialization is tai-
lored for networks using rectified linear units (ReLUs) and
their variants, aiming to prevent the "dying ReLU" problem
by adapting weight initialization to suit these non-linear acti-
vations. Both methods play a critical role in mitigating issues
like vanishing or exploding gradients, ultimately enhancing
the convergence and performance of ANNs during training.
The MNIST dataset is a widely recognized benchmark in the
field of machine learning and computer vision. It consists of
a collection of grayscale images depicting handwritten digits
ranging from 0 to 9. Comprising a training set of 60,000
images and a test set of 10,000 images, MNIST serves as
a foundational resource for developing and evaluating im-
age classification algorithms. Each image is 28x28 pixels
in size, representing a digit drawn by various individuals.
The dataset’s simplicity and accessibility make it a popular
choice for introducing newcomers to image recognition tasks
and for benchmarking the performance of various algorithms.
Despite its basic nature, MNIST remains a valuable resource
for testing and refining machine learning techniques, con-
tributing to the advancement of the field.

II. METHODOLOGY
A. THEORY
Artificial Neural Networks (ANNs) are machine learning
models inspired by the human brain’s neural networks. They
consist of interconnected layers of nodes that learn complex
patterns from data. Neurons are fundamental units in arti-
ficial neural networks (ANNs) inspired by their biological
counterparts in the human brain. Each neuron receives input
signals, processes them using weighted connections, applies
an activation function, and generates an output signal. These

connections, known as synapses, have associated weights that
determine the importance of each input. The weighted sum
of inputs, along with a bias term, is then passed through
an activation function to introduce non-linearity, enabling
the neuron to capture complex patterns in data. Neurons
collectively form layers within neural networks, facilitating
information propagation and transformations.

B. INSTRUMENTATION TOOLS

The entirety of the process is done using Python. Google
Colab, short for Google Colaboratory, is an online platform
provided by Google for running and sharing Jupyter notebook
environments and it was used for all of the coding. Google
colab provides a number of built-in functions for data anal-
ysis. The process of building and training has been carried
out using a number of available functions within the numpy
library. The dataset is visualized using pandas. The results
are then visualized using different visualization tools like
Seaborn and matplotlib.

C. WORKING PRINCIPLE

1) Neural Network

The output of a neuron in an artificial neural network is cal-
culated by summing the weighted inputs, adding a bias term,
and then passing the result through an activation function:

Output = Activation

(
n∑

i=1

(wi · xi) + b

)
(1)

Where wi are the weights, xi are the input values, b is the bias,
and Activation is the chosen activation function.

2) Forward Propagation

Forward propagation is the process in neural networks where
inputs are transformed layer by layer, producing an output
through weighted connections and activation functions.

Z [1] = W [1]X + b[1]

A[1] = gReLU(Z [1])

Z [2] = W [2]A[1] + b[2]

A[2] = gsoftmax(Z [2])

3) Backpropagation

Backpropagation is the iterative process in neural networks
where the gradients of the loss function with respect to the
network’s parameters are calculated. These gradients guide

2

Sushank et al.: Identification of Digits Using Different Configuration ANNs

the adjustment of weights and biases during optimization.

dZ [2] = A[2] − Y

dW [2] =
1

m
dZ [2]A[1]T

db[2] =
1

m
np.sum(dZ [2], axis = 1, keepdims=True)

dZ [1] = W [2]TdZ [2] · g′ReLU(Z [1])

dW [1] =
1

m
dZ [1]XT

db[1] =
1

m
np.sum(dZ [1], axis = 1, keepdims=True)

4) Parameter Update
After computing the gradients during backpropagation, the
network’s parameters are updated using an optimization al-
gorithm like stochastic gradient descent (SGD).

W [2] := W [2] − αdW [2]

b[2] := b[2] − αdb[2]

W [1] := W [1] − αdW [1]

b[1] := b[1] − αdb[1]

Where α is the learning rate,W [i] are the weight matrices, and
b[i] are the bias vectors for each layer i.

5) Activation Functions
Activation functions introduce non-linearity in neural net-
works, enabling them to capture complex patterns and rela-
tionships in data.

Tanh Activation: The Hyperbolic Tangent (tanh) activa-
tion function maps the input values to the range of −1 to 1,
providing a symmetric output that can model both positive
and negative values effectively.

gtanh(z) =
ez − e−z

ez + e−z

Sigmoid Activation: The Sigmoid activation function pro-
duces outputs between 0 and 1, effectively squashing the
input values and is commonly used in binary classification
problems.

gsigmoid(z) =
1

1 + e−z

ReLU Activation: The Rectified Linear Unit (ReLU) is a
widely used activation function that outputs the input value if
it’s positive, and zero otherwise.

gReLU(z) = max(0, z)

Softmax Function: The softmax function is commonly
used in the output layer for multi-class classification. It con-
verts a vector of raw scores into a probability distribution.

gsoftmax(zi) =
ezi∑N
j=1 e

zj

Where zi is the raw score of class i, N is the total number of
classes, and e is the base of the natural logarithm.

6) Loss Functions
Loss functions quantify the difference between the predicted
values and the actual targets, guiding the optimization process
during training.
Mean Squared Error (MSE): MSE computes the aver-

age of the squared differences between predicted and actual
values. It’s commonly used for regression problems.

MSE =
1

m

m∑
i=1

(y(i)pred − y(i))2

Cross-Entropy Loss (Binary Classification): Cross-
entropy loss measures the dissimilarity between the predicted
probabilities and the true binary labels. It’s often used in
binary classification problems.

Cross-Entropy = − 1

m

m∑
i=1

[y(i) log(y(i)pred)+(1−y(i)) log(1−y(i)pred)]

Categorical Cross-Entropy Loss (Multiclass Classifica-
tion): For multiclass classification, categorical cross-entropy
loss computes the sum of the cross-entropy losses for each
class.

Categorical Cross-Entropy = − 1

m

m∑
i=1

C∑
j=1

y(i)j log(y(i)pred,j)

7) Gradient Descent
Gradient Descent is a fundamental optimization algorithm
used to update the parameters of neural networks by mini-
mizing the loss function.

Batch Gradient Descent: In batch gradient descent, the
gradients of the loss function with respect to all training
examples are computed, and the parameters are updated in
the opposite direction of the gradient.

θ := θ − α · ∇J(θ)

Where θ represents the parameters (weights and biases), α
is the learning rate, and ∇J(θ) is the gradient of the loss
function.

Stochastic Gradient Descent (SGD): Stochastic Gradient
Descent updates the parameters using the gradient of the loss
computed for a single training example at each iteration.

θ := θ − α · ∇Jsample(θ)

Where ∇Jsample(θ) is the gradient of the loss with respect to
the current training example.

Mini-Batch Gradient Descent: Mini-batch gradient de-
scent strikes a balance between batch and stochastic methods
by updating the parameters using a small subset (mini-batch)
of training examples.

8) Weight Initialization
Proper weight initialization is crucial for effective neural
network training. Kaiming and Xavier initialization are tech-
niques used to set initial weights, promoting faster conver-
gence and preventing vanishing or exploding gradients.

3

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

Xavier Initialization (Glorot Initialization): Xavier ini-
tialization sets the initial weights of a layer to values drawn
from a uniform or normal distribution with specific variances.
It’s designed to balance the scale of activations and gradients,
preventing the network from becoming too slow or too fast
during training.

For a layer with nin input units and nout output units, the
weights are initialized as:

W ∼ U

(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
Kaiming Initialization (He Initialization): Kaiming ini-

tialization, also known as He initialization, is tailored for
networks that use rectified linear units (ReLUs) as activation
functions. It adapts the initialization to the properties of the
ReLU activation, leading to improved training performance.

For a ReLU-activated layer with nin input units, the weights
are initialized as:

W ∼ N (0,

√
2

nin
)

9) Regularization Techniques
Regularization techniques are used in neural networks to pre-
vent overfitting and improve the generalization performance
of the model.

L1Regularization (Lasso): L1 regularization adds the ab-
solute values of the weights to the loss function, encouraging
some of the weights to become exactly zero. This leads to
sparsity in the model’s parameters.

J(θ) = Loss+ λ

n∑
i=1

|wi|

L2 Regularization (Ridge): L2 regularization adds the
squared values of the weights to the loss function, which
forces the weights to be small but not exactly zero. It helps
in reducing the impact of large weights on the model.

J(θ) = Loss+ λ

n∑
i=1

w2
i

Dropout: Dropout is a regularization technique that ran-
domly sets a fraction of the neurons’ activations to zero during
each forward and backward pass. This prevents the network
from relying heavily on any specific neuron and encourages
robust learning of features.

D. MODEL TRAINING ALGORITHM
The process of training a neural network from scratch in-
volves iteratively adjusting its parameters to learn from the
provided training data. At each epoch, the algorithm performs
forward propagation to predict outputs, computes the loss
between predictions and actual targets, and then conducts
backward propagation to calculate gradients for parameter
updates. During backward propagation, the gradients are

propagated layer by layer, helping to adjust weights and bi-
ases. These parameter updates are achieved through optimiza-
tion methods like gradient descent. The process repeats for a
specified number of epochs, gradually refining the network’s
parameters to improve its predictive accuracy.

Algorithm 1 Train Neural Network from Scratch
Require: Training data (Xtrain, ytrain), Number of epochs
num_epochs, Learning rate α, Number of hidden layers
num_hidden_layers, Number of neurons per hidden layer
num_neurons, Activation function activation_function,
Loss function loss_function

Ensure: Trained neural network parameters
Initialize neural network parameters:

Randomly initialize weights and biases for input, hid-
den, and output layers.
for epoch = 1 to num_epochs do

for each training example (X , y) in (Xtrain, ytrain) do
Perform forward propagation:
Set input layer values: A[0] = X

for l = 1 to num_hidden_layers+ 1 do
Compute Z [l] = W [l]A[l−1] + b[l]

Compute A[l] = activation_function(Z [l])
end for
Compute loss using
loss_function(y,A[num_hidden_layers+1])
Perform backward propagation (Backpropagation):
Compute dZ [num_hidden_layers+1] =

A[num_hidden_layers+1] − y
for l = num_hidden_layers+ 1 to 1 do

Compute dW [l] = 1
mdZ

[l]A[l−1]T

Compute db[l] = 1
mnp.sum(dZ [l], axis =

1, keepdims=True)
Compute dZ [l−1] = W [l]TdZ [l] ·

activation_function_derivative(Z [l−1])
end for
Update parameters using Gradient Descent:
for l = 1 to num_hidden_layers+ 1 do

Update W [l] = W [l] − αdW [l]

Update b[l] = b[l] − αdb[l]

end for
end for

end for
return Trained neural network parameters (weights and
biases)

III. RESULTS
A. TRAINING ANN WITH RANDOM WEIGHT
INITIALIZATION
The neural network was firstly trained by initializing the
weights and biases randomlywith the use of numpy functions.
Random numbers can lead to model underperformance and
high training time if the assigned weights and biases are very
far off from the accurate weight and biases. The training
dataset was trained for over 500 iterations, closing out at

4

Sushank et al.: Identification of Digits Using Different Configuration ANNs

about 84.6% accuracy. The initial slope for the graph of
accuracy plotted against the number of iterations shows a
steep leap in the early training which eventually slowed down.
The trained model was used to predict the numbers from the
MNIST dataset. The confusion matrix for the thus mentioned
inference on the dataset yielded a decent performance with
high scores consistently. This, doesn’t however come without
flaws as there are still a number of data points, being incor-
rectly labeled but those data instances are very low in number.
The testing accuracy was barely able to edge out 85%. The
vanilla approach to training the model used ReLU activation
function only.

B. TRAINING ANN WITH XAVIER INITIALIZATION
The same model was trained over the same dataset for
equal iterations (500) but with some different configurations.
Firstly, as opposed to the ReLU activation function only as
in the vanilla training approach, the introduction of other
non-linear functions, namely tanh and sigmoid was done.
The weights were no more randomly initialized but were
taken form a Xavier Distribution. Training the model with the
different configurations brought about different results. The
accuracy graph plotted against the number of iterations had
almost no resemblance to the plot obtained from random ini-
tialization. The maximum achieved accuracy from the curve
was only about 22%with very bad pattern. The curve seems to
be rising and dropping at times and thereby doesn’t represent
the case of gradient descent. With that, the confusion matrix
for the predicitons with the model was atrocious, leading to
a familiar 22% accuracy. The data instances were labeled
into either of the first three class groups with absolute nil
afterwards. There were a lot of true positives with the number
1 but there were also a lot more numbers being classified as
1 that are not actually 1.

C. TRAINING ANN WITH KAIMING INITIALIZATION
The model underwent training using varying configurations
across 500 iterations, diverging from the conventional ReLU
activation function. Instead, it explored other nonlinear func-
tions such as tanh and sigmoid. Notably, the weight initial-
ization method shifted from random values to Xavier Distri-
bution. This alternative approach yielded distinct outcomes.
Plotting the accuracy graph against the iteration count re-
vealed a dissimilarity to the random initialization plot. Al-
though the curve displayed fluctuations, it displayed an up-
ward trend followed by fluctuations, which deviates from
the characteristic behavior of gradient descent. Despite these
modifications, the maximum attained accuracy plateaued at
around 24%, showcasing an unfavorable pattern. The confu-
sion matrix for the predictions illustrated concerning results.
The majority of data instances were classified into the initial
three class groups, and the subsequent classifications dwin-
dled significantly. While the number 1 class exhibited nu-
merous true positives, the model also classified a substantial
number of non-"1" instances as "1". Even with these changes
in configuration, the predictions saw an improvement in ac-

curacy, reaching 76%, yet still falling short of the random
initialization results. The testing accuracy however came to
around 78%.

D. TRAINING ANN WITH REGULARIZATION
For the forth configuration, regularization was performed on
the model to evaluate the performance. The dropout regular-
ization used on the model randomly sets some of the weights
on the model to be 0, basically disabling the neurons. The
other configurations were similar with only ReLU activation
function being used and a learning rate of 0.1. The training
accuracy from the model was obtained to be 78.5% with a
very normal looking curve that starts to flatten at around 500
iterations. The predictions from the model are pretty decent
with an accuracy of 83.9% over the test dataset. The confusion
matrix has a regular appearance with most of the values lying
in the principal diagonal and very few off-diagonal elements.
Out of the many samples, there are less than 5 instances of
double digit off-diagonals in the confusion matrix.

E. TRAINING ANN WITH MULTIPLE HIDDEN LAYERS
The final training setup for the ANN model consisted of
multiple hidden layers that the data points must pass through
before a prediction is made. Precisely, 3 hidden layers with
RelU, tanh and sigmoid activation functions were used in
succession. The training of the model for 500 iterations with
0.1 learning rate yielded a sub-par 67.3% accuracy over the
training dataset. There was a large number of off-diagonal
elements in the confusion matrix with the accuracy barely
hitting the 67% mark. While there are a lot of forgivable
instances of misclassification, like a 2 being classified as 7,
there are still a number of images that have no resemblance
to the class they are being classified as. Overall, the use of
the hidden layers degrades the model performance more than
when there is only a single one.

IV. DISCUSSION AND ANALYSIS
The initial training of the neural network involved random ini-
tialization of weights and biases using numpy functions. This
approach can lead to underperformance and longer training
times when the assigned weights and biases deviate signifi-
cantly from accurate values. After 500 iterations, the training
dataset achieved an accuracy of approximately 84.6%. The
accuracy graph exhibited an initial steep increase followed by
a slowdown, indicative of learning convergence. This trained
model was then employed for number prediction from the
MNIST dataset. The resulting confusion matrix showed a
commendable performance, albeit with some misclassifica-
tions, particularly in a limited number of data points. The test-
ing accuracy narrowly surpassed 85%, validating the vanilla
training approach with ReLU activation.
In contrast, the model’s second configuration introduced

tanh and sigmoid non-linear activation functions alongside
Xavier Distribution weight initialization. However, this ap-
proach resulted in unexpected outcomes. The accuracy graph
demonstrated an erratic pattern, not resembling the typical

5

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

gradient descent behavior. The maximum accuracy achieved
was around 22%, much lower than anticipated. The confu-
sion matrix corroborated this poor performance, with most
instances beingwrongly labeled as the first three class groups.

Subsequently, a configuration change incorporated the
non-ReLU activation functions with Xavier Initialization.
The accuracy graph again diverged from the anticipated gra-
dient descent pattern, peaking at approximately 24%. The
confusion matrix further underscored the inadequacies, dis-
playing a significant number of misclassifications. While the
accuracy improved to 76%, it remained lower than the initial
random initialization.

In the fourth configuration, regularization was introduced
using dropout. However, even with ReLU activation and a
learning rate of 0.1, the training accuracy plateaued at 78.5%
with a flattening curve. Despite the regularization, the test-
ing accuracy reached 83.9%, showcasing improved results.
The confusion matrix exhibited a more favorable pattern,
with most values on the principal diagonal and minimal off-
diagonal elements.

In summary, the model’s performance deviations can be
attributed to the introduction of different activation functions
andweight initializationmethods.While some configurations
yielded better results, they still fell short of expectations.
The abnormalities suggest that careful tuning and parameter
adjustments are necessary for achieving desirable accuracy
levels.

V. CONCLUSION
In conclusion, our exploration of various configurations and
techniques for training a neural network using the MNIST
dataset has provided valuable insights into the complex in-
terplay of activation functions, weight initialization, and reg-
ularization. Through our experiments, we witnessed the sig-
nificant impact that these factors can have on the model’s
performance. The initial training, employing ReLU activation
and random weight initialization, demonstrated a commend-
able accuracy of around 84.6%. This result underscored the
effectiveness of the vanilla approach in capturing meaningful
patterns within the dataset.

However, as we ventured into alternative configurations,
we observed that deviations from the norm could lead to
unexpected outcomes. Introduction of tanh and sigmoid ac-
tivations along with Xavier Initialization showed notably
lower accuracies, highlighting the sensitivity of the model’s
behavior to these changes. The same trend persisted with the
inclusion of dropout regularization, showcasing the need for
careful selection and combination of techniques.

While our models achieved varying degrees of success,
the achieved results emphasized the intricate nature of neural
network training. Despite the challenges encountered, the
models were still able to provide predictive capabilities, espe-
cially in the regularization-integrated approach where testing
accuracy reached 83.9%. This demonstrates the potential of
neural networks in handling complex classification tasks,
even if the results did not match initial expectations.

In essence, our study underscores the necessity of a sys-
tematic and iterative approach when building and fine-tuning
neural network models. The journey through these config-
urations has offered a deeper appreciation for the delicate
balance between architectural choices and their impact on
model performance. These findings provide a strong founda-
tion for further exploration and refinement, contributing to
our broader understanding of how neural networks can be
effectively leveraged for various applications.

VI. REFERENCES
• David Bowser-Chao and Debra L. Dzialo. "Comparison

of the use of nearest neighbours and neural networks
in top-quark detection." Physical Review D, vol. 47,
no. 5, pp. 1900–1905, Mar. 1993. doi: 10.1103/phys-
revd.47.1900.

PRATIGYA PAUDEL is a fourth year student,
studying computer engineering under IOE, Tha-
pathali Campus. She has been involved in a lot
of machine learning projects and has a keen eye
for data analysis and AI related stuff. With the
enthusiasm for Artificial Intelligence (AI), she is
driven by the potential of AI to transform industries
and tackle complex challenges. Her academic jour-
ney has equipped her with a strong foundation in
AI concepts, including machine learning and data

analysis. She possesses a relentless curiosity and is always eager to explore
the latest advancements in AI. Her goal is to apply her knowledge and make
a meaningful contribution in the field.

SUSHANK GHIMIRE is a fourth year student,
studying computer engineering under IOE, Thap-
athali Campus. He possesses a lot of interest, work-
ing with data. His educational path has provided
him with a solid understanding of AI concepts,
encompassing machine learning and data analysis.
He possesses an unwavering curiosity and is con-
stantly eager to delve into the latest advancements
in AI. His objective is to leverage his knowledge
and expertise to create a significant impact in the

field.

6

Sushank et al.: Identification of Digits Using Different Configuration ANNs

APPENDIX
A. FIGURES AND PLOTS

FIGURE 1. System Block Diagram

7

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

1) Activation Function Curves

FIGURE 2. ReLU Graph

FIGURE 3. Tanh Graph

8

Sushank et al.: Identification of Digits Using Different Configuration ANNs

FIGURE 4. Sigmoid Graph

FIGURE 5. Model Structure

9

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

2) Vanilla Training

FIGURE 6. Accuracy Plot for Vanilla ANN Training

FIGURE 7. Confusion Matrix for Vanilla ANN Training

10

Sushank et al.: Identification of Digits Using Different Configuration ANNs

3) Xavier Initialization

FIGURE 8. Accuracy Plot for ANN Training with Xavier Initialization

FIGURE 9. Confusion Matrix for ANN Training with Xavier Initialization

11

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

4) Kaiming Initialization

FIGURE 10. Accuracy Plot for ANN Training with Kaiming Initialization

FIGURE 11. Confusion Matrix for ANN Training with Kaiming Initialization

12

Sushank et al.: Identification of Digits Using Different Configuration ANNs

5) Training with Dropout

FIGURE 12. Accuracy Plot for ANN Training with Regularization

FIGURE 13. Confusion Matrix for ANN Training with Regularization

13

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

6) Training with Extra Hidden Layers

FIGURE 14. Accuracy Plot for ANN Training with Multiple Hidden Layers

FIGURE 15. Confusion Matrix for ANN Training with Multiple Hidden Layers

14

Sushank et al.: Identification of Digits Using Different Configuration ANNs

B. CODING

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from sklearn.model_selection import train_test_split
5 from sklearn.metrics import confusion_matrix ,classification_report
6 import random
7 import seaborn as sns
8

9 #Dataset Preprocessing
10 data1= pd.read_csv('digit.csv')
11 data1.head(5)
12

13 data = np.array(data1)
14 x,y = data.shape
15 print(x,y)
16

17 np.random.shuffle(data) # shuffle before splitting
18 data2 = data[0:1000].T
19 Y1 = data2[0]
20 X1 = data2[1:y]
21 X1 = X2 / 255
22

23 data_train = data[1000:x].T
24 Y_train = data_train[0]
25 X_train = data_train[1:y]
26 X_train = X_train / 255.
27 _,x_train = X_train.shape
28

29 #Visualizing dataset
30 rand_index = np.random.randint(0, 41000)
31 rand_index
32

33 image = X_train.T[rand_index]
34 img = np.reshape(image, (28,28))
35 plt.imshow(img)
36

37 def init_params():
38 #Initialize weights and biases for the hidden layer
39 W1 = np.random.rand(10, 784) - 0.5
40 b1 = np.random.rand(10, 1) - 0.5
41

42 # Initialize weights and biases for the output layer
43 W2 = np.random.rand(10, 10) - 0.5
44 b2 = np.random.rand(10, 1) - 0.5
45 return W1, b1, W2, b2
46

47 #Activation Functions
48

49 def ReLU(Z):
50 return np.maximum(Z, 0)
51

52 def softmax(Z):
53 A = np.exp(Z) / sum(np.exp(Z))
54 return A

15

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

55

56 def ReLU_deriv(Z):
57 return Z > 0
58

59 def sigmoid(x):
60 return 1 / (1 + np.exp(-x))
61

62 def tanh(x):
63 return np.tanh(x)
64

65 def sigmoid_derivative(x):
66 return sigmoid(x) * (1 - sigmoid(x))
67

68 def tanh_derivative(x):
69 return 1 - tanh(x)**2
70

71 #visualization of various activation functions
72 #ReLu
73 x = np.linspace(-10, 10, 100) # Generate 100 points from -10 to 10
74 y = ReLU(x)
75

76 plt.plot(x, y, label='ReLU')
77 plt.axhline(0, color='black', linewidth=0.5, linestyle='--') # Add x-axis
78 plt.axvline(0, color='black', linewidth=0.5, linestyle='--') # Add y-axis
79 plt.xlabel('Input')
80 plt.ylabel('Output')
81 plt.title('ReLU Activation Function')
82 plt.legend()
83 plt.grid()
84 plt.show()
85

86 #Tanh
87 x = np.linspace(-10, 10, 100) # Generate 100 points from -10 to 10
88 y = tanh(x)
89

90 plt.plot(x, y, label='ReLU')
91 plt.axhline(0, color='black', linewidth=0.5, linestyle='--') # Add x-axis
92 plt.axvline(0, color='black', linewidth=0.5, linestyle='--') # Add y-axis
93 plt.xlabel('Input')
94 plt.ylabel('Output')
95 legend_handles = [
96 plt.Line2D([], [], color='black', marker='o', markersize=10, label='THA076BCT029\nTHA076BCT047',alpha = 0), # Remove the scatterplot marker from the legend
97]
98 plt.legend(handles=legend_handles, loc='upper left', bbox_to_anchor=(0.7, 1.1), ncol=len(legend_handles), handlelength=0.4, borderpad=0.07)
99 plt.grid()
100 plt.show()
101

102 #Sigmoid
103 x = np.linspace(-10, 10, 100) # Generate 100 points from -10 to 10
104 y = sigmoid(x)
105

106 plt.plot(x, y, label='ReLU')
107 plt.axhline(0, color='black', linewidth=0.5, linestyle='--') # Add x-axis
108 plt.axvline(0, color='black', linewidth=0.5, linestyle='--') # Add y-axis
109 plt.xlabel('Input')
110 plt.ylabel('Output')

16

Sushank et al.: Identification of Digits Using Different Configuration ANNs

111 legend_handles = [
112 plt.Line2D([], [], color='black', marker='o', markersize=10, label='THA076BCT029\nTHA076BCT047',alpha = 0), # Remove the scatterplot marker from the legend
113]
114 plt.legend(handles=legend_handles, loc='upper left', bbox_to_anchor=(0.7, 1.1), ncol=len(legend_handles), handlelength=0.4, borderpad=0.07)
115 plt.grid()
116 plt.show()
117

118 def forward_prop(W1, b1, W2, b2, X):
119 Z1 = W1.dot(X) + b1
120 A1 = ReLU(Z1)
121 Z2 = W2.dot(A1) + b2
122 A2 = softmax(Z2)
123 return Z1, A1, Z2, A2
124

125 def one_hot(Y):
126 one_hot_Y = np.zeros((Y.size, Y.max() + 1))
127 one_hot_Y[np.arange(Y.size), Y] = 1
128 one_hot_Y = one_hot_Y.T
129 return one_hot_Y
130

131 def backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y):
132 one_hot_Y = one_hot(Y)
133 dZ2 = A2 - one_hot_Y
134 dW2 = 1 / x * dZ2.dot(A1.T)
135 db2 = 1 / x * np.sum(dZ2)
136 dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
137 dW1 = 1 / x * dZ1.dot(X.T)
138 db1 = 1 / x * np.sum(dZ1)
139 return dW1, db1, dW2, db2
140

141 def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
142 W1 = W1 - alpha * dW1
143 b1 = b1 - alpha * db1
144 W2 = W2 - alpha * dW2
145 b2 = b2 - alpha * db2
146 return W1, b1, W2, b2
147

148 def get_predictions(A2):
149 return np.argmax(A2, 0)
150

151 def get_accuracy(predictions, Y):
152 print(predictions, Y)
153 return np.sum(predictions == Y) / Y.size
154

155 # accuracy_scores = [] # To store accuracy scores at different iterations
156 def gradient_descent(X, Y, alpha, iterations):
157 W1, b1, W2, b2 = init_params()
158 accuracy_scores = [] # To store accuracy scores at different iterations
159

160 for i in range(iterations):
161 Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
162 dW1, db1, dW2, db2 = backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y)
163 W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
164 if i % 5 == 0:
165 print("Iteration: ", i)
166 predictions = get_predictions(A2)

17

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

167 accuracy = get_accuracy(predictions, Y)
168 print(accuracy)
169 accuracy_scores.append((i, accuracy))
170 # Convert accuracy_scores to separate lists for plotting
171 iterations, accuracies = zip(*accuracy_scores)
172

173 # Plotting accuracy vs iterations
174 plt.plot(iterations, accuracies)
175 plt.grid()
176 plt.xlabel('Iterations')
177 plt.ylabel('Accuracy')
178 plt.title('Accuracy vs Iterations')
179 plt.show()
180 return W1, b1, W2, b2
181

182 W1, b1, W2, b2 = gradient_descent(X_train, Y_train, 0.15, 300)
183

184 def make_predictions(X, W1, b1, W2, b2):
185 _, _, _, A2 = forward_prop(W1, b1, W2, b2, X)
186 predictions = get_predictions(A2)
187 return predictions
188

189 def test_prediction(index, W1, b1, W2, b2):
190 current_image = X_train[:, index, None]
191 prediction = make_predictions(X_train[:, index, None], W1, b1, W2, b2)
192 label = Y_train[index]
193 print("Prediction: ", prediction)
194 print("Label: ", label)
195

196 current_image = current_image.reshape((28, 28)) * 255
197 plt.gray()
198 plt.imshow(current_image, interpolation='nearest')
199 plt.show()
200

201 predictions = make_predictions(X1, W1, b1, W2, b2)
202 get_accuracy(predictions, Y1)
203

204 classes = df['label'].unique()
205 classes
206

207 #Confusion matrix
208 conf_matrix = confusion_matrix(Y1, predictions)
209

210 # Plotting confusion matrix as heatmap
211 plt.figure(figsize=(10, 8))
212 sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=classes, yticklabels=classes)
213 plt.xlabel('Predicted')
214 plt.ylabel('Actual')
215 legend_handles = [
216 plt.Line2D([], [], color='black', marker='o', markersize=10, label='THA076BCT029\nTHA076BCT047',alpha = 0), # Remove the scatterplot marker from the legend
217]
218 plt.legend(handles=legend_handles, loc='upper left', bbox_to_anchor=(0.7, 1.1), ncol=len(legend_handles), handlelength=0.4, borderpad=0.07)
219 plt.show()
220

221 #Kaiming Initialization
222

18

Sushank et al.: Identification of Digits Using Different Configuration ANNs

223 def init_params_kaiming():
224 def kaiming_initializer(n_in):
225 return np.random.normal(0, np.sqrt(2 / n_in))
226

227 W1 = kaiming_initializer(784) * np.random.randn(10, 784)
228 b1 = np.zeros((10, 1))
229

230 W2 = kaiming_initializer(10) * np.random.randn(15, 10)
231 b2 = np.zeros((15, 1))
232

233 W3 = kaiming_initializer(15) * np.random.randn(12, 15)
234 b3 = np.zeros((12, 1))
235

236 W4 = kaiming_initializer(12) * np.random.randn(10, 12)
237 b4 = np.zeros((10, 1))
238

239 return W1, b1, W2, b2, W3, b3, W4, b4
240

241 #Xavier Initialization
242

243 def init_params_xavier():
244 def xavier_initializer(n_in, n_out):
245 bound = np.sqrt(6 / (n_in + n_out))
246 return np.random.uniform(-bound, bound)
247

248 W1 = xavier_initializer(784, 10) * np.random.rand(10, 784)
249 b1 = np.random.rand(10, 1) - 0.5
250

251 W2 = xavier_initializer(10, 15) * np.random.rand(15, 10)
252 b2 = np.random.rand(15, 1) - 0.5
253

254 W3 = xavier_initializer(15, 12) * np.random.rand(12, 15)
255 b3 = np.random.rand(12, 1) - 0.5
256

257 W4 = xavier_initializer(12, 10) * np.random.rand(10, 12)
258 b4 = np.random.rand(10, 1) - 0.5
259

260 return W1, b1, W2, b2, W3, b3, W4, b4
261

262 def forward_prop(W1, b1, W2, b2,W3,b3,W4,b4, X):
263 Z1 = W1.dot(X) + b1
264 A1 = ReLU(Z1)
265

266 Z2 = W2.dot(A1) + b2
267 A2 = sigmoid(Z2)
268

269 Z3 = W3.dot(A2) + b3
270 A3 = tanh(Z3)
271

272 Z4 = W4.dot(A3) + b4
273 A4 = softmax(Z4)
274 return Z1, A1, Z2, A2, Z3,A3,Z4,A4
275

276 def one_hot(Y):
277 one_hot_Y = np.zeros((Y.size, Y.max() + 1))
278 one_hot_Y[np.arange(Y.size), Y] = 1

19

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

279 one_hot_Y = one_hot_Y.T
280 return one_hot_Y
281

282 def backward_prop(Z1, A1, Z2, A2, Z3, A3, Z4,A4, W1, W2,W3,W4, X, Y):
283 one_hot_Y = one_hot(Y)
284

285 dZ4 = A4 - one_hot_Y
286 dW4 = 1 / m * dZ4.dot(A3.T)
287 db4 = 1 / m * np.sum(dZ4)
288

289 dZ3 = W4.T.dot(dZ4) * tanh_derivative(Z3)
290 dW3 = 1 / m * dZ3.dot(A2.T)
291 db3 = 1 / m * np.sum(dZ3)
292

293 dZ2 = W3.T.dot(dZ3) * sigmoid_derivative(Z2)
294 dW2 = 1 / m * dZ2.dot(A1.T)
295 db2 = 1 / m * np.sum(dZ2)
296

297 dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
298 dW1 = 1 / m * dZ1.dot(X.T)
299 db1 = 1 / m * np.sum(dZ1)
300 return dW1, db1, dW2, db2, dW3, db3, dW4,db4
301

302 def update_params(W1, b1, W2, b2,W3,b3,W4,b4, dW1, db1, dW2, db2,dW3,db3,dW4,db4, alpha):
303 W1 = W1 - alpha * dW1
304 b1 = b1 - alpha * db1
305

306 W2 = W2 - alpha * dW2
307 b2 = b2 - alpha * db2
308

309 W3 = W3 - alpha * dW3
310 b3 = b3 - alpha * db3
311

312 W4 = W4 - alpha * dW4
313 b4 = b4 - alpha * db4
314

315 return W1, b1, W2, b2, W3, b3, W4, b4
316

317 def get_predictions(A2):
318 return np.argmax(A2, 0)
319

320 def get_accuracy(predictions, Y):
321 return np.sum(predictions == Y) / Y.size
322

323 #Regularization
324 def dropout_forward(X, keep_prob):
325 D = np.random.rand(*X.shape) < keep_prob
326 A = X * D / keep_prob
327 return A, D
328

329 def visualize_dropout(original_data, dropout_data, dropout_mask):
330 fig, axs = plt.subplots(1, 3, figsize=(12, 4))
331

332 axs[0].imshow(original_data.reshape(28, 28), cmap='gray')
333 axs[0].set_title("Original Data")
334

20

Sushank et al.: Identification of Digits Using Different Configuration ANNs

335 axs[1].imshow(dropout_mask.reshape(28, 28), cmap='gray')
336 axs[1].set_title("Dropout Mask")
337

338 axs[2].imshow(dropout_data.reshape(28, 28), cmap='gray')
339 axs[2].set_title("Data with Dropout")
340

341 for ax in axs:
342 ax.axis('off')
343

344 plt.tight_layout()
345 plt.show()
346

347 #Multiple Hidden layers
348 def forward_prop(W1, b1, W2, b2,W3,b3,W4,b4, X):
349 Z1 = W1.dot(X) + b1
350 A1 = ReLU(Z1)
351

352 Z2 = W2.dot(A1) + b2
353 A2 = sigmoid(Z2)
354

355 Z3 = W3.dot(A2) + b3
356 A3 = tanh(Z3)
357

358 Z4 = W4.dot(A3) + b4
359 A4 = softmax(Z4)
360 return Z1, A1, Z2, A2, Z3,A3,Z4,A4
361

362 def backward_prop(Z1, A1, Z2, A2, Z3, A3, Z4,A4, W1, W2,W3,W4, X, Y):
363 one_hot_Y = one_hot(Y)
364

365 dZ4 = A4 - one_hot_Y
366 dW4 = 1 / m * dZ4.dot(A3.T)
367 db4 = 1 / m * np.sum(dZ4)
368

369 dZ3 = W4.T.dot(dZ4) * tanh_derivative(Z3)
370 dW3 = 1 / m * dZ3.dot(A2.T)
371 db3 = 1 / m * np.sum(dZ3)
372

373 dZ2 = W3.T.dot(dZ3) * sigmoid_derivative(Z2)
374 dW2 = 1 / m * dZ2.dot(A1.T)
375 db2 = 1 / m * np.sum(dZ2)
376

377 dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
378 dW1 = 1 / m * dZ1.dot(X.T)
379 db1 = 1 / m * np.sum(dZ1)
380

381 return dW1, db1, dW2, db2, dW3, db3, dW4,db4
382

383

384 def update_params(W1, b1, W2, b2,W3,b3,W4,b4, dW1, db1, dW2, db2,dW3,db3,dW4,db4, alpha):
385 W1 = W1 - alpha * dW1
386 b1 = b1 - alpha * db1
387

388 W2 = W2 - alpha * dW2
389 b2 = b2 - alpha * db2
390

21

Pratigya et al.: Identification of Digits Using Different Configuration ANNs

391 W3 = W3 - alpha * dW3
392 b3 = b3 - alpha * db3
393

394 W4 = W4 - alpha * dW4
395 b4 = b4 - alpha * db4
396

397 return W1, b1, W2, b2, W3, b3, W4, b4

22

Sushank et al.: Identification of Digits Using Different Configuration ANNs

C. BACK PROPAGATION
APPENDIX. BACKPROPAGATION DERIVATION
Consider a simple neural network with one hidden layer. Let’s denote the input as x, the hidden layer weights asWh, the hidden
layer bias as bh, the hidden layer activation function as g, the output layer weights as Wo, and the output layer bias as bo.
The forward propagation equations are:

Zh = Wh · x + bh

Ah = g(Zh)

Zo = Wo · Ah + bo

Ao = g(Zo)

Assume we have a loss function L that measures the error between the predicted output Ao and the target output y. We want
to update the weights and biases to minimize the loss function using gradient descent.

The backpropagation algorithm computes the gradients of the loss with respect to the network’s parameters.
The gradient of the loss with respect to the output layer activations:

δo =
∂L
∂Ao

⊙ g′(Zo)

The gradients of the loss with respect to the output layer weights and bias:

∂L
∂Wo

= δo · ATh

∂L
∂bo

= δo

The gradient of the loss with respect to the hidden layer activations:

δh = (W T
o · δo)⊙ g′(Zh)

The gradients of the loss with respect to the hidden layer weights and bias:

∂L
∂Wh

= δh · xT

∂L
∂bh

= δh

Finally, the weights and biases are updated using the gradients and the learning rate α:

Wo = Wo − α · ∂L
∂Wo

bo = bo − α · ∂L
∂bo

Wh = Wh − α · ∂L
∂Wh

bh = bh − α · ∂L
∂bh

This process of computing gradients and updating weights is repeated iteratively until convergence.

23

	Introduction
	Methodology
	Theory
	Instrumentation Tools
	Working Principle
	Neural Network
	Forward Propagation
	Backpropagation
	Parameter Update
	Activation Functions
	Loss Functions
	Gradient Descent
	Weight Initialization
	Regularization Techniques

	Model Training Algorithm

	Results
	Training ANN with Random Weight Initialization
	Training ANN with Xavier Initialization
	Training ANN with Kaiming Initialization
	Training ANN with regularization
	Training ANN with multiple hidden layers

	Discussion and Analysis
	Conclusion
	References
	Pratigya Paudel
	Sushank Ghimire
	Figures and Plots
	Activation Function Curves
	Vanilla Training
	Xavier Initialization
	Kaiming Initialization
	Training with Dropout
	Training with Extra Hidden Layers

	Coding
	Back Propagation

	Backpropagation Derivation

